

Subsea Processing & Boosting OMC 2011, IOR Workshop Ravenna 24th March 2011

Ove F Jahnsen

Mamager Early Phase & Market

Ovefritz.jahnsen@fks.fmcti.com

Subsea Processing

- Largest contributor to Increased Recovery
- Enabler for difficult production regimes:
 - Long distance tie-back's
 - Low pressure reservoirs
 - Arctic Developments long distance, under ice
 - Cost efficient handling of increased water production
- Enabler for next generation Subsea
 Developments (Less Topside More Subsea)

Subsea Processing = Separation, Boosting, Compression and Power Transmission

FMC is focusing on the IOR Opportunity

IOR Drivers

- Increased demand for oil
- Need for increased production from existing fields
- Extended life-time for existing fields
- OPEX reduction on existing production
- Increased environmental friendliness

Subsea IOR: Great untapped Potential

Increased Oil Recovery defined as the application of technology that can improve recovery beyond what is expected with current plans and methods

IOR Implementation

- Complements continuous production optimization
 - Optimized uptime and production
- Implementation of measures to shift production curve upwards to increase recovery
- Combination of technologies and services

Subsea Processing Development

2014

Development continues along established Roadmap

Åsgard- Statoil

- First Subsea Gas Compression

2011

Marlim - Petrobras

- First heavy oil deep water
- Four-phase separation
- Water injection for pressure support

2011

Pazflor - Total

- First Deepwater
- Gas/Liquid separation
- Hydrate mitigation & pressure support

2007

Tordis – Statoil

- First Commercial System
- Four -phase Separation
- Bulk water removal with injection + boosting

2001

Troll Pilot- Statoil

- First Pilot
- Three phase Separation
- Bulk water removal with injection

Subsea Processing

Enhancing brownfield oil recovery and enabling greenfield development

- Brownfield challenges:
 - Declining oil & gas production
 - Increasing water production
 - Constrained topside facilities
- Greenfield challenges:
 - Heavy oil
 - Low reservoir pressure
 - Hydrate formation
- Subsea processing solutions:
 - Gas/oil/water
 - Gas/Liquid
 - Sand separation
 - Boosting
 - Gas compression

Why Subsea Processing

- Increased recovery
- Accelerate production
- Reduced Capital Expenditure
- Makes it possible to:
 - connect satellite fields to existing infrastructure
 - exploit fields that are normally inaccessible
 - exploit costly infrastructure fully throughout the systems operational period
 - depressurize system as a hydrate strategy
- Influence on the environment will decrease
- Reduces water disposal to sea
- Enhances flow management

What influence selection of separation technology?

Drivers for subsea processing station

- System considerations, not only component considerations
- Flexibility over the life of field, need to cover changes in conditions and uncertainties
- Robust and reliable systems

Fluid properties

 Density, viscosity, mixed viscosity, inversion point etc at operational conditions, asphaltenes, creation of foam, emulsions etc.

Production profile

- Water cut (WC), gas volume fraction (GVF) as function of time
- Pressure, temperature profile as function of time

Sand production

- During "normal" conditions and "worst case" conditions (e.g. screen failure)

Field layout

- Field layout of wells/drilling centers/existing infrastructure
- Sizes of pipelines
- Location of processing station compared to wells

Some operational issues

- Condition change during the field life
 - Flexible and robust system
- Operate outside the design conditions
 - Fail safe systems and training of personnel
- Failure of equipment due to operational errors
 - Fail safe and protection of equipment, e.g. CPM
- Failure of equipment due to mechanical failure
 - Robust design and testing

Future Solutions

Moving from bulk gravity separation

.....to slimmer and more compact solutions.....

.....to inline, ultra-compact solutions

- Proven topside technology
- Ongoing qualification for subsea use

Questions on Subsea Processing

- Do oil companies know what is out there?
- Is the full potential recognized?
- What can we do to increase awareness?
- What will it take to make this a common used technology?
- Economic models demonstrate the benefits, but the risk is considered to high?
- What can we do to reduce risk and increase the confidence?
- Why wait until the added value is less?

The Vision

